Estimation of Upper Limb Joint Angle Using Surface EMG Signal

نویسندگان

  • Yee Mon Aung
  • Adel Al-Jumaily
چکیده

In the development of robot-assisted rehabilitation systems for upper limb rehabilitation therapy, human electromyogram (EMG) is widely used due to its ability to detect the user intended motion. EMG is one kind of biological signal that can be recorded to evaluate the performance of skeletal muscles by means of a sensor electrode. Based on recorded EMG signals, user intended motion could be extracted via estimation of joint torque, force or angle. Therefore, this estimation becomes one of the most important factors to achieve accurate user intended motion. In this paper, an upper limb joint angle estimation methodology is proposed. A back propagation neural network (BPNN) is developed to estimate the shoulder and elbow joint angles from the recorded EMG signals. A Virtual Human Model (VHM) is also developed and integrated with BPNN to perform the simulation of the estimated angle. The relationships between sEMG signals and upper limb movements are observed in this paper. The effectiveness of our developments is evaluated with four healthy subjects and a VHM simulation. The results show that the methodology can be used in the estimation of joint angles based on EMG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Android Application for Estimating Muscle Onset Latency using Surface EMG Signal

Background: Electromyography (EMG) signal processing and Muscle Onset Latency (MOL) are widely used in rehabilitation sciences and nerve conduction studies. The majority of existing software packages provided for estimating MOL via analyzing EMG signal are computerized, desktop based and not portable; therefore, experiments and signal analyzes using them should be completed locally. Moreover, a...

متن کامل

Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals

In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb,...

متن کامل

Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique

Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful.Objective: Removing electrocardiogram contamination from electromyogram signals.Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and e...

متن کامل

Normalized Electromyography of Shoulder Muscles during Selected Functional Tasks of Upper Limb in Patients with Shoulder Impingement Syndrome

Background & Aims: Precise muscle activity pattern is required to maintain normal shoulder function and any alteration in muscle activity can result in movement impairment. The purpose of this study was to assess normalized electromyography (EMG) of shoulder muscles during selected functional tasks of upper limb in patients with shoulder impingement syndrome. Methods: Test group consisted of 15...

متن کامل

Online Estimation of Elbow Joint Angle Using Upper Arm Acceleration: A Movement Partitioning Approach

Estimating the elbow angle using shoulder data is very important and valuable in Functional Electrical Stimulation (FES) systems which can be useful in assisting C5/C6 SCI patients. Much research has been conducted based on the elbow-shoulder synergies.The aim of this study was the online estimation of elbow flexion/extension angle from the upper arm acceleration signals during ADLs. For this, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013